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3D chromatin architecture and transcription 
regulation in cancer
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Abstract 

Chromatin has distinct three-dimensional (3D) architectures important in key biological processes, such as cell cycle, 
replication, differentiation, and transcription regulation. In turn, aberrant 3D structures play a vital role in developing 
abnormalities and diseases such as cancer. This review discusses key 3D chromatin structures (topologically associat-
ing domain, lamina-associated domain, and enhancer–promoter interactions) and corresponding structural protein 
elements mediating 3D chromatin interactions [CCCTC-binding factor, polycomb group protein, cohesin, and Brother 
of the Regulator of Imprinted Sites (BORIS) protein] with a highlight of their associations with cancer. We also sum-
marise the recent development of technologies and bioinformatics approaches to study the 3D chromatin interac-
tions in gene expression regulation, including crosslinking and proximity ligation methods in the bulk cell population 
(ChIA-PET and HiChIP) or single-molecule resolution (ChIA-drop), and methods other than proximity ligation, such as 
GAM, SPRITE, and super-resolution microscopy techniques.
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Background
One of the topological challenges for mammalian cells 
is to accommodate the large genetic material—about 
two meters of DNA—in the tiny space of the nucleus: 
only a few microns in diameter. Meanwhile, cells need 
to ensure proper biological functions for different cell 
types in this genetic and epigenetic information [1]. DNA 
is compacted around histone octamers, namely nucleo-
some, which is considered the first order of chromatin 
structure [2, 3]. The higher order of three-dimensional 
(3D) chromatin structures is various, including cis-reg-
ulatory interactions (such as enhancer–promoter inter-
action, or E–P interaction) and repressive interactions 
(such as Polycomb-mediated interactions and lamina-
associated domains, or LADs), mediated by structural 
elements such as CCCTC-binding factor (CTCF pro-
tein) and cohesin [4–8]. These structures have biological 

implications on the cell cycle, replication, and develop-
ment and are important in modulating gene function and 
cell identity [9]. Due to its involvement in the induction 
and repression of genes through multiple levels, the 3D 
chromatin architecture has an impact on the hallmarks of 
cancers (Fig. 1): sustaining proliferative signalling, evad-
ing growth suppressors, resisting cell death, activating 
invasion and metastasis, enabling replicative immortal-
ity, inducing angiogenesis, reprogramming of energy 
metabolism, creating the tumour microenvironment, 
inflammation, evading immune destruction, and genome 
instability due to mutations [10]. Curaxins, a class of 
anti-cancer drugs, have recently been reported to target 
3D chromatin architecture in cancer treatment [11, 12], 
underlining opportunities for exploring therapeutical 
agents targeting 3D chromatin architectures. This review 
summarises new aspects of different 3D chromatin archi-
tectures and their implications in cancer (Figs. 2, 3). We 
also highlight the advances in studying 3D chromatin 
interactions and recently developed bioinformatic tools.
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Types of 3D chromatin architecture
Topologically associating domain (TAD)
Topologically associating domains (TADs) are self-
interacting regions characterised by increased intra-
domain interactions [13, 14]. The key player in defining 
the boundary of TADs is CTCF, a highly conserved 
zinc-finger DNA-binding protein, detailed in the sec-
tion below (Fig. 2). TADs are established during mam-
malian embryogenesis, especially during the four-cell 
to the eight-cell stage [15, 16]. There is a plethora of 
evidence suggesting the developmental roles of TADs 
[17], providing their modulatory roles in cell cycle and 
DNA replication [18–22], even beyond mammals [23].

The dysregulation of TADs is related to various dis-
eases [24], especially developmental malformations 
and tumorigenesis. Yang et  al. [25] found that 75% of 
hyperdiploid (gain of chromosomes) paediatric acute 
lymphoblastic leukaemia (ALL) have a loss of TAD insu-
lation. Shortly after, the same research group examined 
1418 cases of B-cell precursor ALL (BCP ALL) patients 
among five patient cohorts to elucidate the pathological 
impact of somatic hemizygous 13q12.2 microdeletions 
[26]. They found that 13q12.2 deletion at 5’ of FMS-like 
tyrosine kinase 3 (FLT3) gene disturbs TAD boundaries 
and enhancers of the FLT3, which contributes to leu-
kaemogenesis. TAD also involves various solid tumours. 

Fig. 1 3D chromatin architecture and hallmarks of cancer. The 3D chromatin architecture mediates the induction and repression of genes through 
multiple levels, including the enhancer–promoter looping that is mediated by transcription factors and structural proteins of chromatin. Therefore, 
3D chromatin architecture impacts the hallmarks of cancers: sustaining proliferative signalling, evading growth suppressors, resisting cell death, 
activating invasion and metastasis, enabling replicative immortality, inducing angiogenesis, reprogramming of energy metabolism, creating the 
tumour microenvironment, inflammation, evading immune destruction, and genome instability due to mutations
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Fig. 2 3D chromatin organisation and deregulated transcription in tumorigenesis. Schematic depiction of the different levels of chromatin 
organisation including chromosome territories in the nucleus, lamina-associated domains (LADs) near the nuclear envelope, A and B compartments 
corresponding to open and closed chromatin, and a topologically associated domain (TAD) with the 3D chromatin looping in the TADs that can be 
visualised as chromatin interaction maps (red triangles in TAD). Tumorigenesis involves a range of changes impacting 3D chromatin architecture 
such as LAD defects, TAD boundary defects, and changes in enhancer–promoter (E–P) interactions regulating gene induction or silencing, as well as 
lower-order chromatin changes involving transcription factor availability, histone modifications, DNA methylation/hydroxymethylation, nucleosome 
occupancy, and involvement of long non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs)
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In gastric adenocarcinoma, Ooi et al. [27] demonstrated 
the mechanism mediated by cyclin E1 (CCNE1) reor-
ganisation, by disruption of CCNE1 gene-associated TAD 
boundaries and TAD interactions, resulting in CCNE1 
overexpression in primary tumours. In breast cancer, 
Abdalla et  al. [28] showed Eleanor non-coding RNAs 
(ncRNAs) outlines the TAD borders of the ESR1 gene 
locus in the active nuclear compartment of the long-
term oestrogen-deprived MCF7 cells, which controls 
breast cancer cell apoptosis. Wu et  al. [29] also showed 
multiple myeloma is associated with TAD boundaries 
and size. More recently, Akdemir et  al. [30] found that 
somatic mutation load is in line with TAD boundaries 
in cancer cells. Taken together, TAD is associated with 
tumorigenesis.

As described by Huang et  al. [8], the potency of 
CTCF-mediated transcriptional insulation likely 

depends on several characteristics, including the 
number of tandem CTCF protein binding sites, DNA 
sequences surrounding the protein binding motifs, and 
the location of the CTCF protein binding sites (inside 
TAD boundaries is more likely to function as an insu-
lator than those outside TAD boundaries). However, 
further insight is needed into the factors that control 
the characteristics of the boundary elements. More 
recently, studies suggested that TAD and TAD bounda-
ries are not limited to cancer but could also contribute 
to complex trait heritability, especially for immuno-
logic, hematologic, metabolic traits, and rare-disease 
pathogenesis [31]. In the future, therefore, it is possi-
ble to explore potential molecules that regulate TAD 
boundaries by targeting the CTCF protein, which may 
have broad applications in both cancers and inherited 
diseases.

Fig. 3 The relevance of 3D chromatin interactions in biological processes. Chromatin looping regulates gene expression in diverse cellular 
processes. Protein complexes for the chromatin loop bring enhancers in physical contact with promoters and thereby regulate gene expression. 
The dynamical changes in 3D chromatin architecture are likely to be important for regulating many biological processes during tumorigenesis, 
including cancer stem cell formation and metastatic processes, the dynamical changes of chromatin during the cell cycle, and the clonal evolution 
during tumorigenesis that results in different cancer cell characteristics
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Studies employing high-resolution techniques have 
revealed fine-scale subdomains within TADs, or chro-
matin nanodomains (CNDs) [32–36]. At the single-cell 
level, Bintu et  al. [37] found that CNDs persist in cells 
even though CTCF or cohesin depletion defines the 
TAD boundaries or assists chromatin intermingling (see 
below). In another study, Szabo et  al. [36] investigated 
CNDs using Hi-C and high-resolution microscopy tech-
nologies, supporting the topological structure of CNDs 
and suggesting their potential functions. Therefore, it 
would be interesting to study the potential role of CNDs, 
especially their possible relationships with E–P inter-
actions, and their implications in the development and 
human diseases such as cancer [36]. Such methods will 
help identify the specific characteristics of self-renew-
ing cancer stem cells (CSCs) in primary tumours and 
the particular 3D chromatin changes that dynamically 
change upon the differentiation and dedifferentiation of 
CSCs, or during metastatic processes.

Lamina‑associated domain (LAD)
The nuclear lamina (NL), a fibrous layer mainly made up 
of V-type intermediate filament proteins called lamins, 
lines the inner nuclear membrane. LADs are the genomic 
regions in contact with the NL. Human promoters are 
activated when moved from their native LAD region to 
a neutral context in the same cell [38], suggesting that 
LADs are usually linked to repressive regulation [39]. 
LADs are abundant in di- and tri-methylated histone H3 
lysine 9 (H3K9me2 and H3K9me3), and indeed, genes in 
LADs are mostly lowly expressed [40, 41]. The genome 
is divided into A (active) and B (repressive) compart-
ments, and therefore, LADs correspond to transcription-
ally repressive B compartments [13, 42, 43]. In addition 
to the repression mediated by histone methylations [44], 
histone deacetylation is also related to the repression in 
LAD-associated genes [45–47]. It is worth noting that 
some promoters and enhancers, which are intrinsically 
less sensitive to LAD repression, are still active even 
though they are inside LADs [38], indicating that pro-
moters and enhancers vary greatly in their sensitivity to 
LAD chromatin.

LADs have cell cycle and development implementa-
tions as the change of spatial organisation mediated by 
both TADs and LADs coincides with cell fate decisions 
[48]. In the course of mouse embryonic development, 
LADs are established before the formation of TADs 
and depend on the remodelling of histone H3 lysine K4 
(H3K4) methylation [49]. During the cell cycle, LADs 
are quickly re-established after mitosis [20, 50–52]. 
The relationship between NL and chromatin organisa-
tion/dynamics has been reviewed by Ranade et  al. [53]. 
Lamins provide a chromatin association platform to 

bind histones, active and/or inactive chromatins [54, 55]. 
During the development of early mouse embryos, LADs 
are established in the zygote before the activation of the 
zygotic genome, the TAD establishment, and the consoli-
dation of compartments [15, 16, 49]. Besides the repres-
sive regulation of the LAD-associated genes, the NL 
itself could also regulate developmental genes in a range 
of tissues, and its disruption often leads to diseases. For 
instance, a critical role of LAD architecture in mouse and 
human brain development as well as brain diseases has 
been reviewed by Ahanger et al. [56].

Diseases caused by LMNA mutation or proteins that 
interact with lamins are called laminopathies [57], and 
these are mostly autosomal dominant [58]. Laminopa-
thies caused by mutations in A-type NL may cause 
rearrangement of genome chromatin structure. (Their 
mechanisms and pathophysiologies have been reviewed 
by Briand and Collas [59].) There are two prevailing 
hypotheses for laminopathies: gene expression hypoth-
esis and structural hypothesis (see review by Liu and 
Ikegami [60]). The gene expression hypothesis believes 
mutations interrupt the interactions between NL and 
LADs, while the structural hypothesis states mutations 
disrupt the nuclear envelope.

In recent years, the relatedness of laminopathies with 
cell ageing, cell cycle, and cell fate determination has 
been widely reported [61–63]. Cellular senescence (cell 
ageing) is also sometimes related to oncogene activa-
tion—this phenomenon is named oncogene-induced 
senescence (OIS) [64]. OIS cells lose most of their consti-
tutive LADs, suggesting potential relationships between 
LADs and cancer [64]. The possible mechanisms in this 
process have been explored in recent decades. The abnor-
mal morphological structure of the cancer cell nucleus 
may indicate that cancer cells have an atypical NL struc-
ture [65, 66]. More recently, Ji et al. [67] found that deple-
tion of TOPORS (TOP1 Binding Arginine/Serine-Rich 
Protein), a tumour suppressor, reduces chromatin–lam-
ina interactions and the coverage of LADs. Irianto et al. 
[68] and Kundu et  al. [69] have summarised the role of 
NL in cancer, including cancer cell migration, tumour 
growth, transcriptional regulations, and epigenetic alter-
nations. Nevertheless, the detailed mechanisms between 
LADs and cancer still need to be further explored, which 
might become a potential therapeutical target in future 
cancer treatment. While the DamID method is used to 
identify and study LADs [41, 70, 71], technical advance-
ments using it at the single-cell level [72] or methods for 
investigating NL more directly via live imaging [73] could 
be utilised for cancer cell heterogeneity. LADs may be 
variant in the cancer cells due to their cellular heteroge-
neity [74], and therefore in the future, it is worth inves-
tigating whether LAD re-organisation in cancer cells 
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would lead to abnormal gene expression that is crucial to 
cancer development, cellular dedifferentiation, and the 
different subpopulations in tumours such as CSCs.

Enhancer–promoter (E–P) interactions
Enhancers are usually close to the corresponding gene 
promoters [4, 5]. In the Drosophila genome, about 20% 
of enhancers are located distantly (50–100  kb) from 
promoters that they activate [75, 76], while the distance 
in mammals can be larger [4]. Benabdallah et  al. [77] 
reported that decreased E–P spatial proximity is associ-
ated with enhancer activation. Enhancers can be clas-
sified into three sub-categories based on epigenetic 
histone modifications: (1) active (methylation on histone 
H3 lysine 4, or H3K4me1 and acetylation on histone 
H3 lysine 27, or H3K27ac), (2) neutral/intermediate/
primed (H3K4me1), and (3) poised (H3K4me1 and tri-
methylation on histone H3 lysine 27, or H3K27me3) 
[78–80]. Active enhancers promote target gene expres-
sion, neutral/intermediate/primed enhancers maintain 
basal levels of gene activation, while poised enhancers are 
associated with Polycomb-repressive complex 2 (PRC2; 
detailed below) repression [81]. Poised enhancers can 
be switched to the active state by removing H3K27me3 
and acquiring H3K27ac marks [79, 81]. Enhancers can 
communicate with the target gene promoters, thereby 
forming E–P interactions to regulate gene expression [5, 
82]. Vice versa, gene expression was also found to regu-
late E–P interactions: Bas van Steensel and Furlong [83] 
found that transcripts of genes may conversely regulate 
the formation of 3D genome architecture and stabilise 
E–P interactions.

An enhancer that displays increased usage can use 
multiple promoters [84], suggesting that E–P interactions 
may have various specificity and selectivity. Studies found 
that the binding of architecture proteins with enhancers 
contributes to E–P interaction specificity [85]. Indeed, 
structural proteins, such as CTCF protein (detailed 
below), play an important role in constraining E–P inter-
actions, contributing to 3D genome architectures and 
regulating gene expression [86, 87]. CTCF also contrib-
utes to the heterogeneity in gene expression, even in a 
homogeneous cell population upon responding to stimuli 
[88]. Enhancer activities can also be positively or nega-
tively regulated by DNA loops formed by Lac repressor 
[89]. Whalen, Truty, and Pollard [90] suggested that E–P 
interactions are regulated by various marks—not only 
structural proteins and epigenetic modifications but also 
transcription factors (such as Yin Yang 1 (YY1) reported 
by Weintraub et al. [91]) and transcription.

Enhancers can be transcribed, and the resulting 
enhancer RNAs (eRNAs) are shown to establish long-
range interactions between enhancers and promoters [92, 

93]. In addition, enhancer long non-coding RNAs (elncR-
NAs) are enriched around chromatin loop anchors, rein-
forcing the corresponding E–P interactions [94]. The 
eRNAs and their communication between promoters 
have recently been reviewed by Ray-Jones and Spivakov 
[95].

Stable E–P interactions have been observed in Dros-
ophila embryogenesis [76], indicating that E–P interac-
tions are important in the developmental stages, such as 
intestinal differentiation [96], cell fate decisions [97, 98], 
limb formation [99], and the development of mamma-
lian external genitals [100]. Therefore, aberrations in E–P 
interactions, such as mutations in genes encoding pro-
teins mediating E–P interactions and/or enhancer-bind-
ing proteins, are involved in developmental abnormalities 
and disease such as Cornelia de Lange syndrome (CdLS) 
[101, 102] (Figs. 2, 3).

E–P interaction is also an important mechanism in 
cancer development (see review by Feng et al. [103, 104]). 
ALL is mainly caused by mixed-lineage leukaemia (MLL) 
gene rearrangements, and H3 lysine 79 di- or tri-methyl-
ation (H3K79me2/3) is required for transcription factor 
binding at enhancers in MLL-AF4 leukaemia cells [105]. 
More recently, Godfrey et al. [106] reported that, in MLL-
AF4 leukaemia cells, this epigenetic marker H3K79me2/3 
controls E–P interactions and further activates pan-
cancer stem cell marker protein PROM1/CD133. ncR-
NAs also play a role in T-lineage ALL (T-ALL). Yang 
et  al. [107] found that the formation of neo-loops in 
the non-coding region hijacks enhancers, which regu-
lates the expressions of transcription factors (including 
TLX3, TAL2, and HOXA) in T-ALL patients. In addition, 
eRNA ARIEL boosts E–P interactions, thereby activating 
ARID5B expression and promoting the TAL1-induced 
transcription of the MYC oncogene [108]. eRNA can also 
regulate 3D chromatin architecture and, therefore, E–P 
interactions in solid tumour development (see review by 
Isoda et  al. [109]). In solid tumours, intrigued by more 
than 100 single nucleotide polymorphism (SNP) risk loci 
related to colorectal cancer revealed by genome-wide 
association studies (GWAS), Tian et al. [110, 111] found 
that these risk loci drive long-range E–P interactions, 
regulating several oncogenes including ATF1, E2F1, 
FADS2, and AP002754.2. Chen et al. [112] expanded this 
approach by evaluating GWAS-identified variants in six 
major types of cancer, including colorectal, lung, ovary, 
prostate, pancreas, and melanoma. Among 270 candidate 
target genes, they found that 180 genes (66.7%) had evi-
dence of cis-regulation by risk loci via E–P interactions, 
further supporting the crucial functional roles of E–P 
interactions in cancer.

New methods to study the functional roles of E–P 
interactions have been developed to study their role in 
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development and disease. Wu et  al. [113] described an 
in  situ kethoxal-assisted single-stranded DNA sequenc-
ing (KAS-seq) approach to rapidly capture genome-
wide transcription dynamics and enhancer activity. To 
visualise E–P interactions more intuitively, live imaging 
approaches have been developed. Hongtao Chen et  al. 
[114] and Yokoshi et  al. [115] described a multi-colour 
live imaging method to directly visualise long-range E–P 
interactions and their consequences in transcriptional 
regulations at the single-cell level in live Drosophila 
embryos. These new methods addressed a fundamental 
issue from sequencing or imaging from fixed samples, 
which cannot dynamically characterise the transient 
interaction from the formation of stable  3D chromatin 
architectures.

However, the nature of E–P interactions is complex 
and occurs in a context-specific manner. Many genes can 
interact with multiple enhancers, especially developmen-
tal regulator genes [116–118], and their expression levels 
are positively correlated with the number of E–P inter-
actions [116, 117, 119]. Besides, genes can interact with 
more than one regulatory element [120], and multiple 
activated genes can be topologically clustered [121, 122], 
which may be co-regulated by a single enhancer [123]. 
Therefore, the enhancer may not always directly physi-
cally contact the promoter, and additional mechanisms 
with other protein factors mediating the E–P interactions 
need to be further explored. Also, different E–P inter-
actions may not be equivalent, and the kinetics of E–P 
interactions could also be investigated in more detail in 
the future.

Key structural elements mediating 3D chromatin 
interactions
CCCTC‑binding factor (CTCF protein)
CTCF protein is a highly conserved key player in help-
ing chromatin fold into 3D structures, and most mam-
malian TAD borders bind with CTCF [13, 33]. Xiang 
and Corces [124] reviewed the latest roles of CTCF 
in regulating 3D chromatin architecture. In addition, 
CTCF acts as a versatile factor, involving in transcrip-
tional regulation, insulation, and genomic imprinting 
(see reviews by Merkenschlager and Nora [125], Liu 
et al. [126], Braccioli and de Wit [127], and Wang et al. 
[128]). For example, the binding of CTCF to promoters 
induces long-range enhancer-dependent gene expres-
sion [129]. There are some known factors that impact 
CTCF binding, including epigenetic control (methyla-
tion/demethylation), mutations, and polyADP-ribosyla-
tion (see review by Liu et al. [126]). Recently, emerging 
evidence has revealed new functional roles of this fac-
tor. CTCF was found to be involved in DNA double-
strand break repair and genomic stability (reviewed by 

Tanwar et al. [130]). Also, Alharbi et al. [131] reported 
that CTCF could, directly and indirectly, modulate 
alternative splicing, indicating that CTCF could also 
regulate transcriptomic complexity. In addition, Xu 
et  al. [132] reported transcriptional control by CTCF 
via rewiring of genome-wide chromatin accessibility. 
Taken together, CTCF is an indispensable structural 
protein, which involves many key biological processes.

CTCF-mediated looping is highly conserved, estab-
lished during gastrulation [133], suggesting a criti-
cal role of CTCF in early embryo development. About 
one-third of CTCF binding sites have cell type and/
or tissue specificity [134], indicating that the genomic 
location of CTCF may partially change during cell dif-
ferentiation. Indeed, CTCF residence time regulates 
3D chromatin architecture, gene expression, and DNA 
methylation in pluripotent stem cells [135], suggesting 
that CTCF could dynamically control gene expression 
during development. Also, CTCF occupancy can be 
altered in response to environmental stimuli, such as 
temperature stress [136]. In addition, Zhang et al. [137] 
reported CTCF and transcription as a dynamic regu-
lator of 3D chromatin architecture during the mitosis 
to G1-phase cell cycle. Ren and Zhao [138] have sum-
marised the functional role of CTCF in regulating cel-
lular diversity. Therefore, CTCF binding plays a critical 
role in regulating differentiation, cell fate decisions, 
and development (see reviews by Zheng and Xie [139], 
Arzate-Mejía et al. [87], and Agrawal and Rao [140]).

In recent years, the most extensively studied dis-
ease related to CTCF protein is cancer. Debaugny and 
Skok [141] reviewed the oncogenic roles of CTCF and 
CTCFL (CTCF-like or BORIS; the paralog of CTCF, see 
below section for BORIS). Human IDH gene mutant 
gliomas exhibit DNA hypermethylation, which reduces 
CTCF binding at the PDGFRA oncogene TAD border, 
eliminating TAD border insulation, and activating the 
PDGFRA oncogene [142]. Recent developments have 
shed further light to CTCF and its role in tumorigen-
esis. In prostate cancer progression, Alpsoy et al. [143] 
found that bromodomain-containing 9 (BRD9) inter-
plays with androgen receptor (AR) and CTCF, regulat-
ing AR-dependent gene expression. In breast cancer, 
Wong et  al. [144] examined Nm23-H1 gene expres-
sion (a factor that correlates with metastasis). They 
found that CTCF and early growth response 1 (EGR1) 
could regulate Nm23-H1 gene expression, thereby con-
trolling breast cancer cell metastasis. In melanoma, 
Sivapragasam et  al. [145] found that CTCF binding is 
associated with UV damage formation, facilitating the 
establishment of mutation hot spots in melanoma cells. 
Altogether, CTCF mediates a broad range of locus-
specific interactions and gene expression regulations 
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in normal cells, and their dysregulation can support 
pathologies including cancer.

Aberrations in CTCF can lead to human developmen-
tal diseases (see review by Lazniewski et al. [146]). A key 
mechanism is the interruption of cis-regulatory interac-
tions, such as E–P interactions, through perturbations 
of 3D chromatin architecture, which has recently been 
emphasised [see review by Qiu and Huang [147] in CTCF 
protein and E–P interactions in leukaemogenesis]. For 
example, Zhou et al. [148] reported that zinc finger 143 
(ZNF143) mediates the interactions between CTCF and 
E–P loops, which is essential in haematopoietic stem cell 
and progenitor cell function. Another intriguing area 
related to CTCF is cell ageing. Recently, Takayama et al. 
[149] reported that CTCF acts as a gatekeeper that con-
trols quiescent-to-activated transition in human hemat-
opoietic stem cells. Recent developments suggest CTCF 
could also intervene in the process of senescence by 
reduced binding, thereby downregulating POLD1 gene 
expression [150]. In addition, Miyata et  al. [151] found 
that the pericentromeric ncRNA modulates CTCF bind-
ing and inflammatory gene expression in senescence. 
Therefore, understanding the relationship between CTCF 
and cell ageing could be a potential approach to restoring 
the normal function of senescent cells and is also relevant 
for tumorigenesis.

Polycomb group (PcG) protein
Polycomb group (PcG) proteins mainly act as transcrip-
tional repressors [6] and are the main mechanisms uti-
lised in facultative heterochromatin [152, 153], which 
dynamically define cell identities via epigenetic regula-
tion of developmental genes (see review by Entrevan 
et  al. [154]). PcG protein complexes bind to chromatin 
called Polycomb group response elements, which then 
recognises the epigenetic mark H3K27me3 and com-
pacts chromatin leading to gene silence [155]. Most PcG 
proteins are subunits of one of four categories of protein 
complexes: Polycomb-repressive complexes 1 (PRC1), 
Polycomb-repressive complexes 2 (PRC2), Pho-repressive 
complex (PhoRC), and Polycomb-repressive deubiquit-
inase (PR-DUB) [156], in which PRC1 and PRC2 are most 
extensively studied. PRC1 has six different complexes 
(PRC1.1–PRC1.6), and PRC2 exists in two different forms 
(PRC2.1 and PRC2.2) (see review by Tamburri et  al. 
[157]). PRC1 is central to the Polycomb system because 
Polycomb-repressive machinery requires PRC1 catalytic 
activity [158]. PRC1 works by catalysing the mono-ubiq-
uitination of histone H2A at lysine 119 (H2AK119ub1) 
[159–161]. Also, PRC1 can detect H2AK119ub1 deposi-
tion, which is a central hub that gathers PcG repressive 
machinery to preserve cell transcriptional profiles [157]. 
More recently, increasing evidence has suggested that 

PRC1 also demonstrates transcription activator func-
tion. (The transcription activation and repression charac-
teristics of PRC1 have been reviewed by Geng and Gao 
[162].) The other player, PRC2, can bind scaffold proteins 
SUZ12 and EED, writing mono-, di-, and tri-methylation 
of histone H3 lysine 27 (H3K27me1, H3K27me2, and 
H3K27me3) on the chromatin [163–165]. The detailed 
structure and function of PRC2 have been reviewed by 
Moritz and Trievel [166]. PRC2 recruitment and H3K27 
methylation are crucial in the spatiotemporal regulation 
of developmental gene expression and cell fate control 
(see reviews by Laugesen et al. [167] and van Mierlo et al. 
[168]). Schuettengruber et al. [169] summarised the core 
components in the PcG complex and their corresponding 
epigenetic functions.

The key function of PcG proteins is to regulate the 
3D chromatin architecture of the target genes involved 
in cell differentiation and identity (see review by Entre-
van, Schuettengruber, and Cavalli [154]). Also, long-
range 3D chromatin interactions mediated by Polycomb 
genome architecture have been observed. Kraft et  al. 
[170] suggested PRC2 can mediate long-range Polycomb-
associated DNA contacts spanning tens to hundreds of 
megabases across multiple TADs. Joshi et  al. [171] also 
observed extremely long-range promoter–promoter 
interactions mediated by H3K27me3 Polycomb architec-
ture identified by Capture Hi-C.

PRC1 and PRC2 are so important in development 
because they are required for embryonic stem cell differ-
entiation and embryonic development, and the absence 
of either PRC1 or PRC2 will lead to developmental fail-
ure [172–175]. Emerging evidence suggests that PcG 
proteins also mediate DNA repair and genome stability 
(see review by Fitieh et al. [176]). In addition to its devel-
opmental and regulatory roles in chromatin architecture 
and gene expression, studies have shed light on their 
behaviours in various disease states, including cancer, 
aiming to explore how it can be targeted pharmacologi-
cally [see review by Chan and Morey [177] for the roles of 
PcG proteins in regulating stem cells and cancers]. One 
of the key players targeting PRC2 activity in cancer treat-
ment is enhancer of zeste homologue 2 (EZH2), which is 
an enzymatically active subunit of the PRC2 complex that 
methylates H3K27 to promote chromatin compaction 
and transcriptional silencing (see reviews by Margueron 
and Reinberg [178] and Di Croce and Helin [179]). Dis-
turbance of EZH2 behaviours in cancer includes both 
gain-of-function and loss-of-function mutations in 
EZH2, overexpression of EZH2, mutations in the H3K27 
demethylase UTX, and mutations in the SWI/SNF chro-
matin remodelling complex (see review by Kim and 
Roberts [180])—this is related to cancer initiation, metas-
tasis, immunity, metabolism, and drug resistance (see 
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review by Duan, Du, and Guo [181], Gan et al. [182], and 
Huang et al. [183]). Tiffen et al. [184] reported EZH2 as 
a mediator of treatment resistance in melanoma, and 
Park et  al. [185] illustrated EZH2 functions in prostate 
cancer. A phase I study of EZH2 inhibitor GSK2816126 
was completed in 41 patients with advanced hemato-
logic and solid tumours [186]. This study demonstrated 
that GSK2816126 manifested modest anticancer activ-
ity, but it has a relatively short half-life, limiting effec-
tive exposure. Another clinical trial on EZH2 inhibitor 
Tazemetostat has recently been completed in malignant 
mesothelioma patients, showing similar outcomes [187].

Therefore, the Polycomb-mediated developmental 
regulation may be worthwhile to be investigated in the 
future to better understand processes regulating stem 
cell differentiation or dedifferentiation, the cellular het-
erogeneity among tumour cells and CSCs. In addition, 
more clinical trials on novel EZH2 inhibitors are ongoing 
[181, 188], which should yield more results to deepen our 
understanding of the clinical potential of this novel treat-
ment avenue. Current EZH2 inhibitors may not be highly 
effective in certain cancer types. Therefore, in the future, 
further clinical trials on combination therapies with 
EZH2 inhibitors will be promising to maximise therapeu-
tic benefits, and the development of highly predictive bio-
markers for EZH2 therapeutic response will be needed. 
Also, novel EZH2 inhibitors targeting EZH2 post-trans-
lational modifications may have therapeutic potentials 
in cancer therapy [189]. Moreover, it has been shown 
that some natural products can modulate EZH2 activity 
[190]. Due to toxicity and relatively low efficiency with 
current EZH2 inhibitors, therefore, developing natural 
agents to modulate EZH2 activity may be a new approach 
to reduce side effects in cancer therapy. Beyond EZH2, 
overexpression of another Polycomb protein in PRC1, 
chromobox homolog protein 2 (CBX2), is also associated 
with poor survival by maintaining CSCs, which might be 
an emerging approach targeting Polycomb proteins that 
could be used in cancer therapy [191]. Recently, Rosen-
berg et al. [192] identified RNA motifs relevant to PRC2 
binding and its repressive function in mouse embryonic 
stem cells, which may provide new ideas on PRC2-tar-
geting molecules in disease treatments. In addition, his-
tone H2A mono-ubiquitination (H2Aub) is catalysed by 
PRC1 and removed by the PcG-repressive deubiquitinase 
(PR-DUB)/BAP1 complex, and H2Aub deposition can 
interplay with PRC2-catalysed histone H3K27 methyla-
tion—this crosstalk is also involved in cancer pathologies 
(see review by Barbour et al. [193]). The H2Aub deposi-
tion can affect 3D chromatin architecture and therefore 
could further impact gene expression [193]. However, 
the regulation of H2Aub deposition is still largely elu-
sive. Therefore, targeting H2Aub deposition or removal, 

which indirectly modulates PRC2-catalysed histone 
H3K27 methylation cascade, might be another potential 
approach in cancer treatment.

Cohesin
The cohesin protein complex is one of the best-known 
structural maintenance of chromosomes (SMC) com-
plexes (the structures have been reviewed by Yuen and 
Gerton [194] and Gligoris and Löwe [195]), which medi-
ates sister chromatid cohesion by holding sister chroma-
tids during cell cycles to ensure appropriate chromosome 
segregation [196–198], and it is also important in main-
taining the 3D architecture of interphase chromosomes 
[199–201]. After the formation of CTCF anchors, cohesin 
can then assist the loop extrusion process (Fig. 3), which 
is mainly classified into three types of mechanisms [7]: 
diffusion by Brownian motion [202], the extrusion via 
motor activity from ATP hydrolysis [203], and/or extru-
sion by pushing cohesin with other translocating factors, 
possibly via RNA polymerase II (RNAPII) [204]. The 
extrusion procedure may be a combination of multiple 
mechanisms [7]. The detailed mechanism of the loop for-
mation and enlargement has been extensively reviewed 
by Davidson and Peters [205], van Ruiten and Rowland 
[206], Kamada and Barillà [207], and Sedeño Cacciatore 
and Rowland [208].

Cohesin protein complex also regulates gene expres-
sion through modulating chromatin structures. Recent 
studies showed that the N-terminus of CTCF could 
directly interact with cohesin in chromatin looping, 
which can be regulated by several RNA-binding domains 
(see review by van Ruiten and Rowland [209]). In fact, 
cohesin and CTCF are interdependent with each other 
in gene expression regulation: CTCF works in coopera-
tion with other proteins, including cohesin [146]; in turn, 
CTCF boundaries and enhancers also regulate cohesin 
loading and loop extrusion [210], and the Myc-associ-
ated zinc finger (MAZ) also collaborates with CTCF to 
regulate cohesin-mediated genome organisation [211]. 
Cohesin and CTCF separate chromatin into different 
spatial domains, and the chromatin interactions within 
domains occur more frequently than between domains. 
This spatial segmentation therefore results in ‘regulatory 
segmentation’, where genes can be co-regulated within 
domains (see review by Merkenschlager and Nora [125]) 
by facilitating long-range E–P interactions (see reviews 
by Zhu and Wang [212] and Dorsett [213]).

While being implicated in developmental disorders, 
cohesin-related protein dysregulation is also associated 
with tumour initiation and development, and muta-
tions in genes encoding cohesin protein complex have 
been identified in cancers [see review by De Koninck 
and Losada [214], and also Waldman [215] summarised 
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the recent insight to cohesin protein complex in cancer 
pathogenesis. Fisher et  al. [216], in particular, summa-
rised the cohesin mutations in myeloid malignancies], 
where the hinge domain in the cohesin complex has been 
shown to play a critical role [217]. In vertebrate somatic 
cells, there are two types of cohesin subunit protein, 
SA1 and SA2 (encoded by STAG1 and STAG2 genes), 
which hold SMC3, SMC1, and RAD21 proteins to form 
the cohesin protein complex, called cohesin-STAG1 and 
cohesin-STAG2 [218]. STAG2 is the most frequently 
mutated in solid cancers [219, 220], and in hematologic 
malignancies, genes including STAG1, STAG2, RAD21, 
SMC1A, and SMC3 are frequently mutated [221–223]. 
Also, precocious dissociation of sisters 5 (PDS5) is an 
associated protein of cohesin complex [224]. It has been 
shown that PDS5B protein behaves as a tumour sup-
pressor, as PDS5B gene expression level is reduced in 
gastric and colorectal cancers [225], and about 47% of 
breast cancer have low expression of PDS5B [226]. The 
low PDS5B expression may be regulated by epigenetic 
modifications, especially methylation, of CpG island of 
PDS5B promoter [226], and PDS5B reduction might pro-
mote cancer cell proliferation through the IL-6/STAT3/
cyclin D axis [227]. In addition, miRNA-223 microRNA 
could interact with PDS5B mRNA, and inducing PDS5B 
expression or using miRNA-223 inhibitor could inhibit 
pancreatic cancer cell growth [228]. Therefore, in the 
future, targeting dysfunctional or mutated cohesin com-
plex can be a novel strategy in cancer therapies, and 
cohesin mutated patients can be considered as an indi-
vidual subgroup in clinical trials. Also, the abnormal 
expression of cohesin complex genes is associated with 
cancer development [229], which could be used as novel 
prognostic tools in cancer.

Therefore, the cohesin complex has versatile functions 
in many disorders, and could open therapeutic possibili-
ties in the future as a molecular target. Cohesin protein 
complex can interact with other architectural proteins, 
including CTCF and PcG protein [230], which may echo 
its fundamental role in 3D chromatin structure and gene 
regulations. Antony et  al. [231] reviewed the potential 
therapeutical targets regarding cohesin complex muta-
tions in cancer. More recently, in hematologic malignan-
cies, including MDS and acute myeloid leukaemia, in 
particular, mutations in the cohesin complex have been 
reported to be the key driver to alter DNA damage repair 
and chromatin architecture [232], providing more thera-
peutic opportunities in blood cancers. Also, DNA break-
ages at CTCF/cohesin protein-binding sites could be a 
robust early detection tool of blood cancer-susceptible 
individuals in the future [233]. Moreover, USP13 deubiq-
uitinase was recently found as a novel cohesin-interacting 
protein regulating ubiquitination, which might provide 

novel strategies in regulating cohesin protein levels in 
human diseases. Finally, in the future, a more detailed 
understanding of the cohesin complex will be gained by 
more advanced technologies and methods, such as super-
resolution visualisation [234] and liquid chromatin Hi-C 
[235]. For example, previously, STAG1 and STAG2 subu-
nits of cohesin were considered to behave similarly, while 
recent studies have discussed the differences between 
these two types to better understand their regulatory 
roles (see review by Cuadrado and Losada [236]). The 
deeper understanding will enable exploring more thera-
peutical approaches in disease treatment.

Chromatin remodeller
Chromatin remodellers are multi-protein complexes. 
They have ATPase activity, using energy from ATP 
hydrolysis, to translocate nucleosomes [237], thereby 
altering chromatin structure and controlling chroma-
tin accessibility [238, 239]. A specialised chromatin 
domain, the ‘epigenetic reader domain’, senses external 
signals such as histone modifications in the remodel-
lers [238, 240] to enable other non-catalytic subunits 
guide the remodeller to dedicated nucleosome positions 
[238]. Based on the conserved catalytic subunit con-
taining ATPase activity, chromatin remodellers can be 
mainly categorised into four families, including SWI/SNF 
(SWItch/Sucrose Non-Fermentable), CHD (Chromodo-
main-Helicase-DNA binding), ISWI (Imitation SWItch), 
and INO80 (inositol requiring 80), and they have differ-
ent epigenetic reader domains (see review by Längst et al. 
[241]).

Chromatin remodellers have important implications 
in cancers (see review by Biegel et  al. [242]). A cancer 
genome sequencing project containing 4623 various 
cancer samples showed the SWI/SNF family has tumo-
rigenesis (tumour suppressor) functions [243], in which 
about 20% of tumour samples have at least one mutation 
in the SWI/SNF complex. (The well-known p53 tumour 
suppressor gene is mutated in about 26% of tumour sam-
ples.) Some cancers have reported unexpectedly higher 
SWI/SNF mutation rates, such as ovarian clear cell car-
cinoma (75%), clear cell renal cell carcinoma (57%), hepa-
tocellular carcinoma (40%), gastric cancer (36%), and 
melanoma (34%) [244]. Some mutations in the subunits 
of SWI/SNF complex have proved to be associated with 
cancers, although the detailed mechanisms are not yet 
fully understood. For example, SMARCA4 (BRG1) and 
SMARCA2 (BRM) are commonly mutated subunits in 
cancers [244, 245]. Also, another subunit SMARCAD1 
has proved to be related to breast cancer migration, inva-
sion, and metastasis [246]. [Tong et al. [247] reviewed the 
biological mechanisms (especially DNA damage repair) 
mediated by SMARCAD1.] ARID2 (AT-rich Interactive 
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Domain 2) genes also encode subunits of SWI/SNF 
remodellers, which is associated with hepatocellular car-
cinoma (see review by Loesch et al. [248]).

Since SWI/SNF complex is important in carcinogene-
sis, recent research tried to investigate its detailed mech-
anisms and explore possibilities for druggable targets. 
Bayona-Feliu et  al. [249] reported SWI/SNF maintains 
genome integrity and stability via R-loop-dependent 
transcription–replication conflicts. This study indicates 
mutations of SWI/SNF complex trigger carcinogenesis 
via inducing genome instability. Based on this hypoth-
esis, a recently developed bromodomain inhibitor was 
proposed, targeting SWI/SNF complex to promote dou-
ble-strand break and DNA repair [250], which demon-
strates the feasibility for targeting SWI/SNF in cancer 
chemotherapy. Hong et al. [251] reported carcinogenetic 
mechanisms of SMARCB1 and liver cancer.

The interactions between different chromatin remod-
eller families and also other structural proteins are 
not clear, and how they may cooperate in gene expres-
sion regulation. It has been recently reported that SWI/
SNF can cooperate with ISWI to regulate transcription 
in yeast and mice [252], but similar mechanisms may 
need to be validated in human cells. Chang et  al. [253] 
observed increased occupancy of ACTL6A within SWI/
SNF complex in human squamous cell carcinoma, which 
neutralises polycomb-mediated repressions. As SWI/
SNF complex has a typical epigenetic reader domain, it 
is worth investigating the interplay between epigenetic-
modifying enzymes and SWI/SNF complex in cancers. A 
recent study reported evidence of interactions between 
SWI/SNF ATPase subunit SMARCA2 and histone meth-
yltransferase NSD2 in multiple myeloma development 
[254]. In addition, mutations in SWI/SNF complex may 
mediate response and resistance to cancer immunother-
apy and resistance. For example, ARID2 has been shown 
to be associated with the immune blockade in mela-
noma [255]. Also, in pancreatic ductal adenocarcinoma, 
ARID1A mutation and B2M inactivation can be related to 
metastasis and immunotherapy resistance [256]. There-
fore, targets associated with SWI/SNF complex may be 
beneficial to immunotherapy outcomes.

Extrachromosomal DNA (ecDNA)
Extrachromosomal DNA (ecDNA) is a double-strand 
DNA molecule without centromeres and telomeres out-
side of the chromosome, usually 1–3 Mb in length [257]. 
The formation of ecDNA may be a combination of sev-
eral processes, including replication slippage, episome 
formation, DNA double-strand-break based events, roll-
ing, translocation–excision–deletion–amplification, and 
chromothripsis (see reviews by Gu et al. [258] and Wang 
et  al. [259]). Its behaviours in cancers have drawn great 

attention in recent years, involving important aspects in 
tumorigenesis, including tumour heterogeneity, onco-
gene amplification, drug resistance, and senescence (see 
reviews by Wang et al. [259] and Qiu et al. [260]).

One of the important mechanisms of ecDNA in con-
trolling oncogene expressions is through ‘hijacking’ 
enhancers. Morton et  al. [261] reported that EGFR 
involved ecDNA amplicon patterns using a computa-
tional approach in primary human glioblastoma speci-
mens, and discovered ecDNA adjacent enhancers are 
consistently co-selected with the corresponding onco-
genes during ecDNA biogenesis. They also revealed dis-
tal chromatin contact during the formation of ecDNA as 
the co-selected enhancers could also be located outside 
of the TAD of the original chromosome demonstrated by 
the chromosome conformation capture technique. Later, 
Helmsauer et  al. [262] observed that extrachromosomal 
circular MYCN amplicons in neuroblastoma are consist-
ently co-selected with proximal local enhancers, which 
may not be endogenous local enhancers. Therefore, the 
ecDNA could acquire abnormal enhancer activity to 
drive oncogene expressions that promote tumorigenesis.

To further investigate 3D chromatin architecture and 
long-range chromatin interactions on ecDNA, recently, 
Zhu et  al. [263] leveraged ChIA-PET and ChIA-Drop 
interaction assays and found that ecDNA can act as a 
highly mobile super-enhancer element that drives gene 
expressions in glioblastoma and prostate cancer cell 
lines. Also, most recently, Hung et al. [264] reported that 
ecDNA hubs (clusters of 10 – 100 ecDNA in the nucleus) 
drive intermolecular E–P interactions to induce onco-
gene expression. Therefore, it would be interesting to 
interfere ecDNA hubs as a novel future cancer therapeu-
tic strategy.

Brother of the Regulator of Imprinted Sites (BORIS)
Brother of the Regulator of Imprinted Sites (BORIS) pro-
tein is a paralog to CTCF, also known as CTCFL [265]. 
BORIS protein is mainly associated with spermatogen-
esis but also cancer formation. Pugacheva et  al. [266] 
characterised 23 isoforms in germline and cancer cells, 
varying in zinc-fingers DNA-binding domain, amino and 
carboxyl termini, and expression levels. These isoforms 
may have different regulating abilities and transcriptional 
regulation outcomes [267–271].

BORIS is essential for spermatogenesis [272–274]. 
There are two categories of CTCF/BORIS-bound regions: 
single CTCF target sites (1xCTSes) that are bound 
by CTCF alone and double CTCF target sites (2xCT-
Ses) either bound by both CTCF and BORIS or BORIS 
alone in germ cells and BORIS-positive somatic cancer 
cells [275]. BORIS is overexpressed in several cancers 
(see reviews by Klenova et  al. [265] and Martin-Kleiner 
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[276]) and is involved in important biological processes 
in cancer [277, 278], such as the apoptosis pathway [279]. 
Debruyne et  al. [280] reported molecular mechanisms 
mediated by BORIS that promote chromatin interactions 
in cancer cells. BORIS recently drew more attention as a 
target in CSCs [281], suggesting new immunotherapeu-
tic avenues in treating advanced metastatic and drug-
resistant cancers. For example, BORIS induces OCT4 
overexpression through histone methylation, promoting 
CSC-like characteristics in liver cancer cells [282].

Phase separation
Phase separation forms when intracellular proteins and/
or nucleic acids build a functionally specialised non-
membrane-bound (or ‘membraneless’) local subcompart-
ments, which can be either liquids, solids, or gels (see 
review by Boeynaems et  al. [283]). The protein compo-
nents in these subcompartments can be either scaffolds 
or reactors [284], where scaffolds drive the dynamic 
phase separation (such as FUS family proteins), and reac-
tors mediate specific biological reactions. Nucleic acid 
components in phase separation are mainly non-coding 
RNAs, especially lncRNAs [285].

Among them, liquid–liquid (or gel-like) phase separa-
tion has been widely studied in recent years and sheds 
light on its role in tumorigenesis [284]. For example, 
lncRNA TUG1 could bind with other structural pro-
teins such as methylated PC2 protein CBX4 inducing 
liquid–liquid phase separation and present genes to PcG 
clusters to regulate growth signals [285]. The spatiotem-
poral interactions between protein and nucleic acid are 
weak interactions controlled by dynamic post-transla-
tional modifications (such as phosphorylation, acetyla-
tion, and methylation) and RNA modifications (such as 
 m6A modification) [286]. In cancer cells, the functional 
phase separation can condensate cancer-related proteins, 
involved in genomic instability, transcriptional regulation 
of cancer-related proteins/pathways, and protein degra-
dation (see reviews by Jiang et  al. and Wang et  al., who 
summarised the oncogenic processes involved in phase 
separation [286, 287]).

Some recent work has brought new insights on the 
mechanisms of phase separation in carcinogenesis and 
its possibility as a novel therapeutical strategy in can-
cer. Mechanistically, fusion genes in cancers may pro-
mote tumorigenesis via phase separation. Ahn et  al. 
[288] recently deciphered how liquid–liquid phase 
separation forms unstructured intrinsically disordered 
regions (IDR) contributing to leukaemia. They found 
that a homeodomain-containing transcription factor chi-
maera, namely NUP98-HOXA9, is essential for forming 
liquid–liquid phase separation. Therefore, it promotes 
the establishment of super-enhancer, thereby activating 

leukaemogenic genes. Similarly, in lung cancer, Qin et al. 
[289] reported EML4-ALK fusion aggregates through 
phase separation in various cancer cell lines. This fusion 
protein activates downstream STAT3-mediated signalling 
pathways, thereby promoting tumorigenesis. Another 
work suggested that phase separation is associated with 
glycogen accumulation especially in liver cancer [290]. 
The researchers found that glycogen phase separation 
in the cytoplasm in early-stage liver tumours causes the 
accumulation in glycogen, which blocks the Hippo sig-
nalling pathway and drives tumorigenesis. Therefore, it is 
possible to monitor glycogen changes for early diagnosis 
and/or prognosis of cancer. Nevertheless, a clear under-
standing of how phase separation drives cancers remains 
elusive. Recent advances in the methods for studying 
phase separations (see review by Mehta et al. [291]) help 
in the deeper investigation of the molecular function and 
mechanisms involved in this process.

Advances in studying 3D chromatin interactions
Chromatin interaction analysis with paired‑end tag 
(ChIA‑PET) sequencing
From chromosome conformation capture (3C), chromo-
some conformation capture-on-chip (4C), chromosome 
conformation capture carbon copy (5C), to Hi-C, chro-
matin conformation capture techniques lack specificity 
to a specific protein [13, 33, 51, 292, 293]. To improve 
the specificity, Fullwood et al. [294] proposed chromatin 
interaction analysis with paired-end tags (ChIA-PET), 
which implements enrichment strategies and can identify 
both short- and long-distance 3D chromatin interactions 
mediated by a specific protein of interest at the whole-
genome scale. The protocol has been updated from short 
PETs (2 × 20 bp) to longer PETs up to 2 × 250 bp [295], 
which increase its mapping efficiency and accuracy. It has 
been extensively applied to study 3D chromatin inter-
actions in human/mouse cells mediated by CTCF and 
RNAPII [91, 98, 296–298].

To yield the required number of informative reads, 
the number of cells required for each ChIA-PET experi-
ment has been large [298]. To address this problem, 
in situ ChIA-PET was introduced by Bertolini et al. [299], 
where the proximity ligation is performed in intact nuclei 
(Fig.  4). This method has higher efficiency in capturing 
intra-molecular interactions and requires fewer cells to 
detect protein-mediated chromatin interactions [299].

HiChIP
Another method to address the cell number issue of 
the ChIA-PET experiment is HiChIP [300], which takes 
advantage of in situ Hi-C [33] and transposase-mediated 
library construction approach [301]. HiChIP is per-
formed by stabilising chromatin contacts in  situ in the 
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nucleus to reduce false-positive interactions and improve 
chromatin interaction capture efficiency [302]. Then, 
ChIP is performed to enrich the interactions associ-
ated with the protein of interest before high-throughput 
sequencing [300]. Due to data type, some tools can be 
used for both ChIA-PET and HiChIP data processing 
(Table 1).

ChIA‑drop
The above methods only reflect pairwise and population-
level views of chromatin interactions. Zheng et al. [322] 
reported a method called ChIA-Drop that can reveal the 
chromatin interactions in single-molecule resolution. It 
takes advantage of the droplet-based genomic analysis 
[328] to isolate single chromatin complexes without liga-
tion. ChIA-DropBox [325] was designed specifically for 
ChIA-Drop data analysis (Table  1). This method makes 

it possible to characterise the multiplex chromatin inter-
actions (e.g. transcription hub) at a single-molecule view 
and examine the cellular heterogeneity of chromatin 
contacts.

Move away from proximity ligation to genome‑wide 3D 
chromatin interactions
Beagrie et  al. [323] developed the genome architecture 
mapping (GAM) method, the first genome-wide method 
for capturing 3D chromatin interactions without prox-
imity ligation. GAM measures 3D chromatin distances 
using ultrathin cryosectioning and DNA sequencing. It 
infers chromatin spatial organisation by determining the 
presence or absence of all genomic loci in many random-
orientated individual thin nuclear slices from a popula-
tion of nuclei, which can be analysed by MIA-Sig [327] 
(Table  1). More recently, the same research group has 

Fig. 4 Comparison of 3D chromatin analyses methods. Comparison of the main experimental steps of 3C, 4C, 5C, Hi-C, HiChIP/PLAC, and ChIA-PET 
that allow identifying chromatin interactions between enhancers and promoters as well as chromatin domains
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optimised the GAM protocol (‘multiplex-GAM’) into a 
faster and more affordable version [329] that could gen-
erate informative enrichment contact information using 
only a few hundred cells.

Split-pool recognition of interactions by tag extension, 
or SPRITE, can also detect genome-wide 3D chroma-
tin interactions without proximity ligation, developed 
by Quinodoz et al. [324]. It can identify extremely long-
range inter-chromosomal interactions and measure DNA 
and RNA interactions simultaneously. This research 
group recently improved SPRITE in the single-cell reso-
lution (scSPRITE), which is more efficient and afford-
able than the single-cell HiC method [330]. Tools such as 
MATCHA [326] and MIA-Sig [327] can be used to pro-
cess both SPRITE and ChIA-drop data (Table 1).

Super-resolution microscopy can be used to visualise 
3D chromatin interactions more directly and intuitively. 
Recently, Su et  al. [331] reported a genome-scale imag-
ing technology to visualise 3D chromatin interactions 
in situ of a single cell. This method utilised a multi-scale 
approach combining fluorescence in  situ hybridisation 

(FISH) [332] and clustered regularly interspaced short 
palindromic repeats (CRISPR) labelling methods, which 
can image more than one thousand genomic loci concur-
rently in single cells. However, this method depends on 
the choice of genomic loci, and it is unclear whether the 
experimental procedures would perturb the chromatin 
structure (e.g. FISH, CRISPR labelling, and cell fixation).

Single‑cell technologies in 3D chromatin architecture
To study 3D chromatin architecture at the single-cell 
level, till now, there are two main techniques: imaging-
based techniques (especially fluorescence in situ hybridi-
sation of DNA, or DNA-FISH, at the single-cell level) and 
high-throughput sequencing-based techniques (espe-
cially single-cell Hi-C). DNA-FISH-based imaging is a 
method that can literally observe the chromatin structure 
at the single-cell level, such as 3D-FISH [333] and cryo-
FISH [334]. However, the DNA-FISH-based imaging 
approaches have limited throughput, which only allows 
observing a small number of genomic loci at a time.

Table 1 Summary of advanced methods studying 3D chromatin interactions and related bioinformatic tools

Technologies Tools Comments

ChIA-PET [294, 295] ChIA-PET Tool: Li et al. [303]
ChiaSig: Paulsen et al. [304]
MICC: He et al. [305]
Mango (also for HiChIP): Phanstiel et al. [306]
ChIA-PET2: Li et al. [307]
ChIAPoP: Huang et al. [308]
ChIA-PET Tool V3: Li et al. [309]
ChIA-PIPE (also for HiChIP): Lee et al. [310]

ChIA-PET tool is the first software package designed for ChIA-PET data 
analysis
ChiaSig and MICC were developed later, which uses statistical models to 
adjust random noise
Mango is a bias-correcting pipeline based on statistical confidence, 
which also corrects bias caused by non-specific interactions due to 
genomic proximity
Since ChIA-PET tool and Mango are only compatible for half-linker data 
in the linker trimming step, and ChiaSig and MICC are only a step in 
the analysis pipeline, ChIA-PET2 was developed, which supports both 
half-linker and bridge linker data, and integrates all steps required for 
the analysis
ChIAPoP, which is another fully automated pipeline integrated all the 
above features and claimed to outperform the above tools
ChIA-PET tool has updated to ChIA-PET tool V3 for updated experimen-
tal protocol
ChIA-PIPE is the most comprehensive fully automatic pipeline that 
integrates many features

HiChIP [300] hichipper: Lareau and Aryee [311]
MAPS: Juric et al. [312]
HiC-Pro: Servant et al. [313]
Fit-HiC: Ay et al. [314]
Juicer: Rao et al. [33]; Durand et al. [315]
HiChIP-Peaks: Shi et al. [316]
FitHiChIP (also for ChIA-PET): Bhattacharyya et al. [317]
cLoops (also for ChIA-PET): Cao et al. [318]
Peakachu (also for ChIA-PET): Salameh et al. [319]
AQuA-HiChIP: Gryder et al. [320]
HiC-DC + : Sahin et al. [321]

ChIA-PIPE used for ChIA-PET data analyses can also be used for HiChIP 
data analysis
Hichipper and MAPS are designed specifically for HiChIP data processing
One can also use HiC-Pro pipeline for HiChIP data processing, and per-
form contact calling using Fit-HiC, Mango, and Juicer
HiChIP-Peaks is a peak calling algorithm, which generate satisfactory 
results for HiChIP data and discover loops
FitHiChIP is a loop calling method, which can also perform differential 
HiChIP analysis for characterising differential loops
cLoops is another loop calling method using statistical model
Peakachu deploys a random forest classification framework to predict 
loops
AQuA-HiChIP can perform differential chromatin interaction analysis 
between samples

ChIA-drop [322]; 
GAM [323]; SPRITE 
[324]

ChIA-DropBox (ChIA-Drop): Tian et al. [325]
MATCHA (ChIA-Drop and SPRITE): Zhang and Ma [326]
MIA-Sig (ChIA-Drop, GAM, and SPRITE): Kim et al. [327]
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The recent development of single-cell and next-gener-
ation sequencing technologies has opened a new chapter 
in studying 3D chromatin architecture at single-cell reso-
lution. Single-cell Hi-C is one of the widely used meth-
ods which uses Hi-C library preparation in isolated single 
nuclei [335]. In 2017, Stevens et  al. [336] described the 
first genome-wide 3D interactions in mouse embryonic 
stem cells using single-cell Hi-C. GAM, as we describe 
in the above section, can also examine chromatin inter-
actions at single-cell resolution by performing nucleus 
cryosectioning and sequencing of DNA on nuclear slices 
[323]. Future efforts (such as reducing sectioning thick-
ness) might be able to additionally increase its resolution. 
HiCAR (high-throughput chromosome conformation 
capture on Accessible regulatory DNA) is a most recently 
developed method that simultaneously investigates the 
transcriptome, accessible regulatory elements and their 
interactions, which represents the functional output 
of chromatin structure and accessibility [337]. HiCAR 
requires much less input material (can as little as 30,000 
cells) than traditional techniques (such as HiChIP [300], 
PLAC-seq [338], and in situ ChIA-PET [299]).

Conclusions and future perspectives
In summary, 3D chromatin interactions, including 
TAD, LAD, E–P interactions, and Polycomb domain, 
are crucial in transcription regulations, which plays 
a key role in development and diseases. It is possible 
to use crosslinking and proximity ligation methods 
in the bulk cell population (ChIA-PET, HiChIP) or 
single-molecule resolution (ChIA-drop) to study 3D 
chromatin interactions. Methods other than proximity 
ligation, such as GAM, SPRITE, and super-resolution 
microscopy techniques, are also reported for studying 
genome-wide 3D chromatin interactions. Bioinformatic 
tools have been extensively developed to analyse the 
data. More studies are needed to investigate reducing 
the number of cells to generate informative data and 
reduce experimental perturbations of chromatin struc-
ture. Also, it would be interesting to combine differ-
ent analyses in single cells such as single-cell RNA-seq 
and single-cell ATAC-seq with 3D chromatin architec-
ture. This would widen the technical opportunities to 
investigate early stages of cancer formation, cell cycle 
progression, clonal evolution of cancer, chemoresist-
ance and metastatic processes, ultimately combining 
temporal and spatial dimensions. Integration of single-
cell ATAC-seq and 3D chromatin interaction data has 
been applied to dissect the causal regulatory variants 
in neurological diseases [339]. Single-cell RNA-seq 
would reveal the transcriptomic responses in the het-
erogeneous cell population, and single-cell ATAC-seq 
could explain the concordance between the chromatin 

accessibility and the expression profiles. Therefore, 
these single-cell techniques could cross-validate the 
scientific findings and provide a broader picture of 
studying chromatin regulatory behaviours. Ultimately, 
these understandings revealed by the state-of-the-art 
technologies will certainly open a new area of research 
on anticancer therapies. While inhibitors of epigenetic 
regulatory enzymes exist, only curaxin CBL0137 has 
been so far reported to target 3D genome by affect-
ing long-range cis-regulatory elements via interacting 
CTCF-binding sites [11, 12]. It is expected that future 
research in this area will lead to further improved strat-
egies for the treatment of cancer.
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